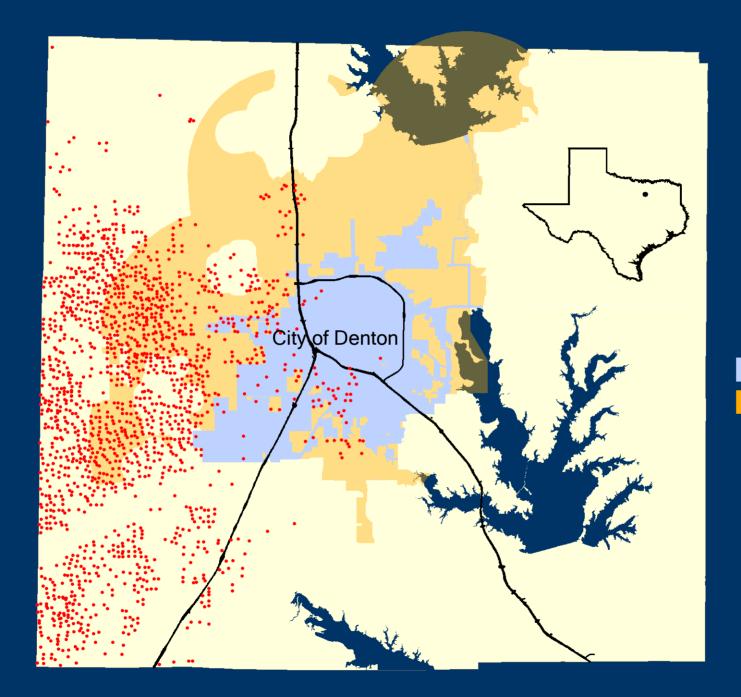
Evaluation of Erosion and Sediment Control Practices for Land Disturbance Activities Using RUSLE2


> David J. Wachal City of Denton Water Utilities Kenneth E. Banks City of Denton Division of Environmental Quality

Erosion from Land Disturbance

- Sediments are the single most widespread pollutant affecting the water quality in rivers and streams (USEPA, 2000)
- Physical, chemical, and biological damage from erosion and sedimentation in North America may exceed \$16 billion annually (Osterkamp et al., 1998)
- In developing urban areas, construction activities are responsible for 50 to 90% of sediment entering surface waters (Burton and Pitt, 2002; Canning, 1998)
- Sediment yields from construction activities range from a few tons to over 500 tons per acre per year (USEPA, 2002a)

Research Objective

- The objective of this research was to evaluate the relative effectiveness of BMP alternatives for natural gas well sites
 - Modeling approach using the Revised Universal Soil Loss Equation (RUSLE, Version 2)
 - Three slope profiles
 - Three soil erodibility factors
- Short-term goal understand how slope and soil might effect various BMP efficiencies
- Long-term goal use quantitative results to improve storm water component of existing ordinance

Study Area

Gas Well
City Limits
ETJ

Site Characteristics

- Construction activities from natural gas well sites disturb a substantial amount of the ground surface (2-5 acres)
- Completed sites may have moderate to steep cut and fill slopes that are unprotected from erosion
- Pad sites are semi-permeable
- Construction activities and field operations for oil and gas exploration and production are exempt from NPDES permitting

Site Grading

Bird's Eye View of Site Development

Drilling in Process

5 40 0 Th

Natural Gas Well Site

Methodology

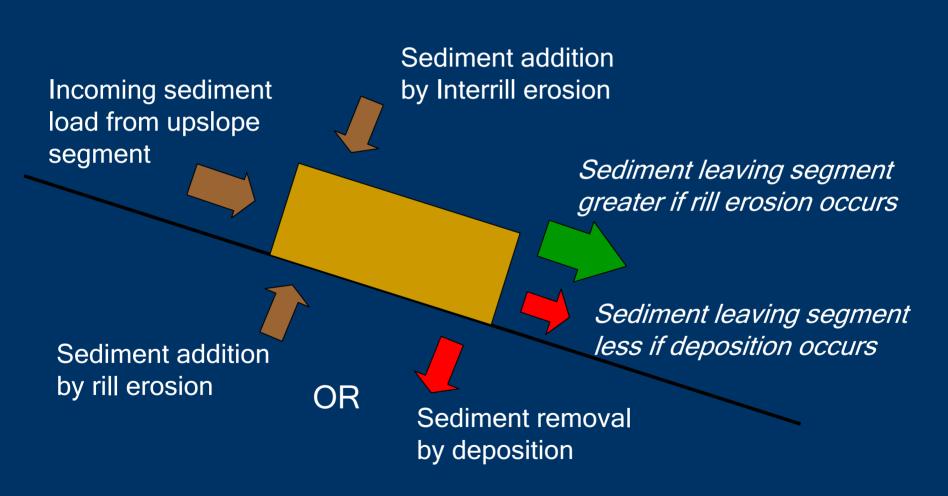
- Average annual sediment yields were modeled using RUSLE2
- For each slope and soil combination sediment yields were modeled with and without BMPs
- BMP Efficiencies were calculated accordingly:

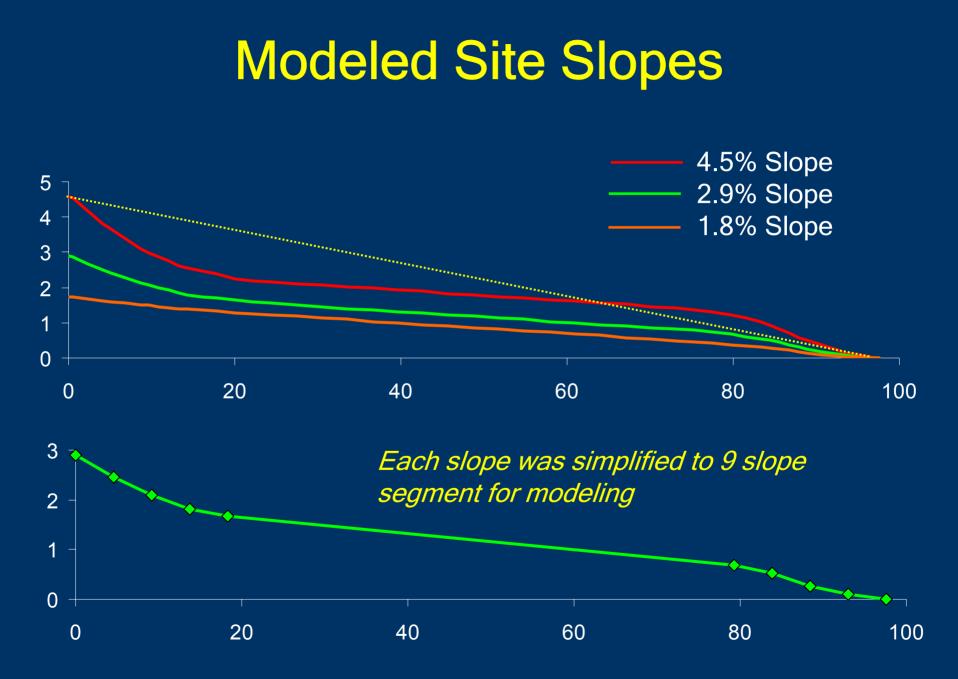
 $ER = (SY_{without BMP} - SY_{withBMP}) / SY_{without BMP}$

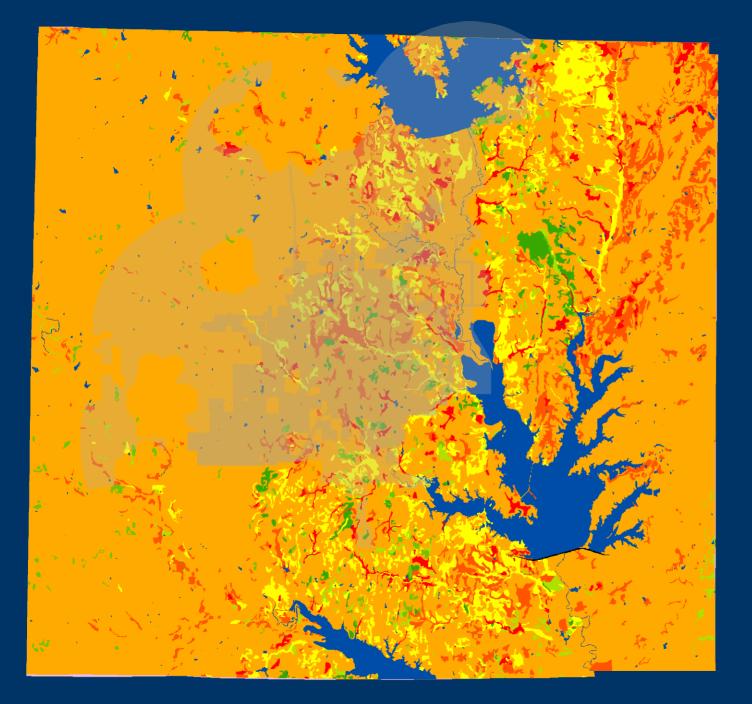
ER = (50 tons - 10 tons) / 50 tons = 80% efficiency

Modeled BMPs

- Seeding
- Mulching
- Erosion Blanket
- Silt Fence
- Filter Strip
- Sediment basin


Erosion Control


Sediment Control


About the RUSLE2

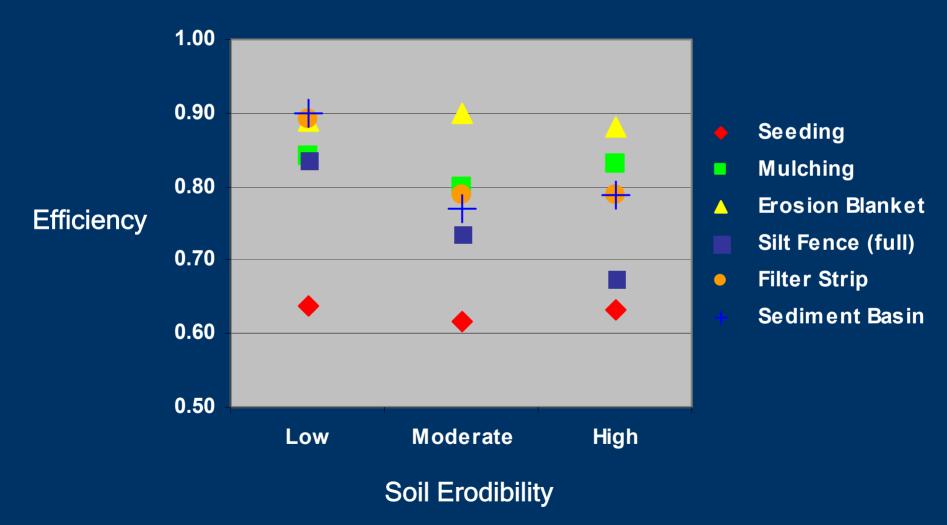
- Public domain model developed and maintained by USDA - Agricultural Research Service - *Model Documentation (Foster, 2003)*
- Specifically designed as a conservation management tool for a variety of different land uses
- Intended to be used uncalibrated
- Estimates average annual sediment yields
- Easily customizable to specific site characteristics and geographical regions

How RUSLE2 Works

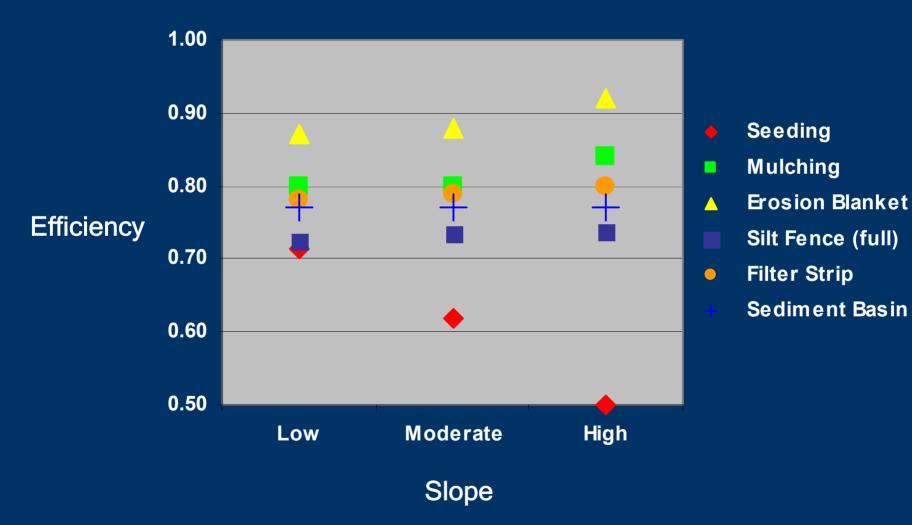
Area Soils

> NRCS Soils K-factor .17 .20 .24 .28 .28 .32 .32 .37 .43 .43 Dam Water

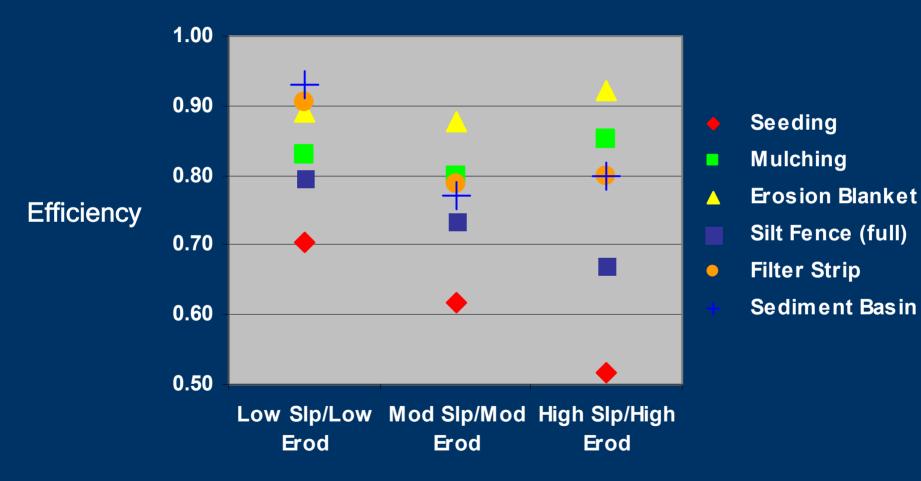
(NRCS, 2006)


File Database Edit Wew Options Window Help Image Edit Status Edit Auto update Calc Manage Add break Erase break Detechment on slope, Vac/vr 27 Sol Sol Sol Detechment on slope, Vac/vr 27 Sol Sol Sol Detechment on slope, Vac/vr 27 Sol Sol Sol Sol Detechment on slope, Vac/vr 27 Sol Sol Sol Sol Detechment on slope, Vac/vr 27 Sol Sol Sol Sol Sol Sol Sol Sol Sol Location USA/TexavDenton County Image Normal rest burial General yield level Base yield To Hoit Overland Residue inputs Adjust ext. res. additions Residue inputs Adjust ext. res. additions Encidue inputs Adjust ext. res. additions Period Sol So	RUSLE2 ARS Version Aug 9 2006 - [Profile: Highly disturbed land\2.9% Gas Well Slope Profile]															
Addbreak Erase break Addbreak Erase break Addbreak Erase break Addbreak Erase break Addbreak Erase break Addbreak Erase break Addbreak Erase break Soil base and potion, V2A/W 27 Soil base and potion, V2A/W 27 Crit. stope length. ft Adjust res. build level Adjust res. build level Adjust res. cov. values Suff cover Adjust reck cover C Adjust reck reck cover C Contouring Topography Management Contouring Topography adjust reck cover C Adjust reck adjust reck cover C Adjust reck adjust reck cover C T value Vac/W 20 T value	ni.	File Data	base Edit	View Optio	ons Windov	v Help										
Add break Erase break Add break Erase break Soil loss end potion, Vac/w 27 Soil loss for cons. plan, Vac/w 27 Horiz. overland flow path length, ft 220 Adjust res. burial level Normal res. burial General yield level Adjust rock. covers Adjust rock cover Adjust rock cover Adjust rock cover Adjust rock cover Erashe and totics Adjust rock cover Adjust rock cover Tradie. Vac/w USLE/RUSLET factor values Sediment distribution Sist incode and plan. Node with value. Vac/w 30 Soil Topography and goverland low path Tradie. Vac/w With value. Vac/w 30 Value. Vac/w Sed. load Normal res. load Normal res. load Normal res. load				1.1			~ I	(m) (A)		S70 100	-		81			
Manage Topo 0 Sol loss end, patrix Sol los los loss end, patrix Sol los los loss end, pat	-					ii 🥆 1	🔟 🍹 kabu		小 城 一			update Laic				
Avg. slope steepness, % 2.9 Surf. res. cov. values Surf. cover Adjust yield Yields Adjust ext. res. additions Residue inputs Adjust rock cover Adjust rock cover Residue inputs Align of oper on segments Segment output Erosion by day Ero How get soil erodibility? Set by user Calc. consolidation from precip? Yes USLE/RUSLE1 factor values Sedment distribution S Sedment distribution S Set (Dod2 mm) % 33 Set (Dod2 mm) % Set (Dod		Add break Erase break Soil Oss erod. portion, t/ac/yr 27 Soil loss erod. portion, t/ac/yr 67 Soil loss for cons. plan, t/ac/yr 20 Sediment delivery, t/ac/yr 17 Enrichment, fraction 1.3 Crit. slope length, ft														
Align of oper on segments Segment output Erosion by day Ero USLE/RUSLE1 factor values Sediment distribution S Soil Topography Management Contouring Topography along overland flow path Contouring S How get soil erodibility? Stature Clay (c0020 mm) % 34 Toule, t/ac/yr Segment Steepness, from origin Erosion per unit of flow to rate, t/ac/yr Mith Hydrologic class D - highest runoff T 3 6.0 45.0 36 101 Hydrologic class Specifie Specifie 4 3.0 60.0 -43 71.4 Specifie Specifie Specifie Specifie 6 3.0 275 57.7 61.5 Specifie mit 23 000029 0000079 00000059 26 7 6.0 290 150 164 Specifie Sand 23 000039 000018 27 9 2.0 32 33 226 sand 41		Avg. slope steepness, % 2.9 Surf. res. cov. values Surf. cover Adjust yield Yields Adjust yield Adjust yield Adjust ext. res. additions Residue inputs														
USLE/RUSLE1 factor values Sediment distribution S Soil Topography Management Contouring Texture Clay (c0.002 mm), % 34 Topography along overland flow path Imagement Contouring Still (0.002.005 mm), % 33 Topography Horiz. distance Sed. load Hydrologic class D - highest runoff Topography Segment Steepness, from origin Erosion per unit Ib/ft/yr Hydrologic class D - highest runoff Imagement 3 6.0 45.0 36 101 Imagement, ft Imagement, ft Spec. surf. area, ft2/oz 3400 Imagement, ft Imagement, ft Spec. surf. area, ft2/oz 3400 Imagement, ft Spec. su											Gi	raphic		Rock o	cover, %	0
USLE/RUSLE1 factor values Sediment distribution S Soil Topography Management Contouring Texture Clay loam Ture Ture <thture< th=""> Ture <thture< th=""></thture<></thture<>		Align of oper on segments Segment output Erosion by day Ero How get soil erodibility? set by user 🚽 Calc. consolidation from precip? Yes														
Soil Topography Management Contouring Texture Clay (c0.002 mm), % 34 Totalue, 1/ac/yr 3.0 Topography along overland flow path Imagement <		USLE/F	RUSLE1 fact	or values		Sediment	distribution	1	S		Erodibili	ty, US 0.32			nme, yr	
Clay (2002 mm), % 34 Sit (0.002-005 mm), % 33 Sand (0.05-2 mm), % 33 S					1 5		1	touring			Texture	Clay Ioam 🗾		T value,	, t/ac/yr	3.0
3 6.0 45.0 36 101 4 3.0 60.0 -43 71.4 5 1.5 260 -5.3 22.3 6 3.0 275 57 61.5 7 6.0 290 150 164 8 4.0 305 89 226 9 2.0 320 33 249		Segment	Steepness,	Horiz. distance from origin of flow to bottom of	Erosion	per unit width,	d 🔺		Info		Silt (0.002-0.05 m Sand (0.05-2 m Hydrologic with subsurface dra	nm), % <u>33</u> nm), % <u>33</u> : class D - highest ru				
4 3.0 60.0 -43 71.4 5 1.5 260 -5.3 22.3 6 3.0 275 57 61.5 7 6.0 290 150 164 8 4.0 305 89 226 9 2.0 320 33 249	-	3	6.0	45.0	36	101				Spec. surf.	area, ft2/oz 34	100				
5 1.5 260 -5.3 22.3 6 3.0 275 57 61.5 7 6.0 290 150 164 8 4.0 305 89 226 9 2.0 320 33 249	120										Deta	ached Particle Info				
6 3.0 275 57 61.5 7 6.0 290 150 164 8 4.0 305 89 226 9 2.0 320 33 249		the second s											Diameter.	Fall velocity.		
8 4.0 305 89 226		6									Туре	Portion, %				
9 2.0 320 33 249 ✓ sand 4.1 0.0079 0.052 2.7 small agg. 31 0.0019 0.0022 1.8		7			and the second se		_				clay					
small agg. 31 0.0019 0.0022 1.8	1	and the first second					_									
	-	9	2.0	320	33	249										
												54	0.027	0.11	1.6	

Results


Sediment Yield without BMPs (tons/acre/yr)

	K-factor	K-factor	K-factor	
	0.17	0.32	0.43	
	Sandy Loam	<i>Clay Loam</i>	Silty Clay Loam	
1.8% slope	5.4	8.7	13.0	
2.9% slope	11.0	17.0	27.0	
4.5% slope	25.0	38.0	60.0	


Results BMP Efficiencies for 2.9% Slope

Results BMP Efficiencies for 0.32 k-factor

Results BMP Efficiencies for Combined Factors

Conclusion

- Without BMPs, modeled sediment yields ranged from 5 to 60 tons per acre per year
- With BMPs, sediment yields were reduced by 50 to over 90 percent
- Soils and slope can both influence BMP efficiency
- Methodology can be used to assist in the selection of BMPs according to various site factors

References

- Burton G.A., & Pitt, R.E. (2002). *Stormwater effects handbook: A toolbox for watershed managers, scientists, and engineers*. Boca Raton: Lewis Publishers.
- Canning, D.J. (1988). *Construction erosion control*. Shorelands Technical Advisory Paper No. 3. Olympia, WA.: Shorelands and Coastal Zone Management Program, Washington Department of Ecology.
- Foster, G.R., D.C. Yoder, G.A. Weesies, D.K. McCool, K.C. McGregor, and R.L. Bingner. (2003). *RUSLE2 user's guide*. USDA-Agricultural Research Service, Washington, D.C.
- Osterkamp, W.R., Heilman, P., & Lane, L.J. (1998). "Economic considerations of a continental sediment-monitoring program." *International Journal of Sediment Research*, 13(4), 12-24.
- Natural Resources Conservation Service (NRCS) (2006). NCSS Web Soil Survey. Retrieved October 1, 2006 from http://websoilsurvey.nrcs.usda.gov/app/
- U.S. Environmental Protection Agency (USEPA) (2000). *National Water Quality Inventory 1998 Report to Congress*' USEPA 841-R-00-001; USEPA, Office of Water; Washington, D.C.
- U.S. Environmental Protection Agency (USEPA) (2002a). *National management measures to control nonpoint source pollution from urban areas draft*. EPA 842-B-02-003. Washington, D.C.

Thank you

David Wachal City of Denton david.wachal@cityofdenton.com (940) 349-7107